Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 16(4): 634-44, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26732872

RESUMO

Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.


Assuntos
Biologia Celular , Doença , Refratometria/métodos , Animais , Hematologia , Humanos
2.
Lab Chip ; 14(21): 4237-43, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25205636

RESUMO

In this paper, for the first time, an on-chip optofluidic imaging system is innovated to measure the biophysical signatures of single waterborne bacteria, including both their refractive indices and morphologies (size and shape), based on immersion refractometry. The key features of the proposed optofluidic imaging platform include (1) multiple sites for single-bacterium trapping, which enable parallel measurements to achieve higher throughput, and (2) a chaotic micromixer, which enables efficient refractive index variation of the surrounding medium. In the experiments, the distinctive refractive index of Echerichia coli, Shigella flexneri and Vibrio cholera are measured with a high precision of 5 × 10(-3) RIU. The developed optofluidic imaging system has high potential not only for building up a database of biophysical signatures of waterborne bacteria, but also for developing single-bacterium detection in treated water that is in real-time, label-free and low cost.


Assuntos
Bacilos Gram-Negativos Anaeróbios Facultativos/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Fenômenos Biofísicos , Desenho de Equipamento , Refratometria , Microbiologia da Água
3.
Nanoscale ; 4(1): 261-8, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22080247

RESUMO

Solar cells based on one-dimensional nanostructures have recently emerged as one of the most promising candidates to achieve high-efficiency solar energy conversion due to their reduced optical reflection, enhanced light absorption, and enhanced carrier collection. In nature, the rainforest, consisting of several stereo layers of vegetation, is the highest solar-energy-using ecosystem. Herein, we gave an imitation of the rainforest configuration in nanostructure-based solar cell design. Novel multi-layer nanorainforest solar cells based on p-Si nanopillar array/n-CdS nanoparticles/n-ZnO nanowire array heterostructures were achieved via a highly accessible, reproducible and controllable fabrication process. By choosing materials with appropriate bandgaps, an efficient light absorption and enhanced light harvesting were achieved due to the wide range of the solar spectrum covered. Si nanopillar arrays were introduced as direct conduction pathways for photon-generated charges' efficient collection and transport. The unique strategy using PMMA as a void-filling material to obtain a continuous, uniform and low resistance front electrode has significantly improved the overall light conversion efficiency by two orders of magnitude. These results demonstrate that nanorainforest solar cells, along with wafer-scale, low-cost and easily controlled processing, open up substantial opportunities for nanostructure photovoltaic devices.

5.
Nano Lett ; 9(7): 2513-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19583279

RESUMO

The single-crystal n-type and p-type ZnO nanowires (NWs) were synthesized via a chemical vapor deposition method, where phosphorus pentoxide was used as the dopant source. The electrical and photoluminescence studies reveal that phosphorus-doped ZnO NWs (ZnO:P NWs) can be changed from n-type to p-type with increasing P concentration. Furthermore, we report for the first time the formation of an intramolecular p-n homojunction in a single ZnO:P NW. The p-n junction diode has a high on/off current ratio of 2.5 x 10(3) and a low forward turn-on voltage of approximately 1.37 V. Finally, the photoresponse properties of the diode were investigated under UV (325 nm) excitation in air at room temperature. The high photocurrent/dark current ratio (3.2 x 10(4)) reveals that the diode has a potential as extreme sensitive UV photodetectors.


Assuntos
Eletricidade , Nanofios/química , Óptica e Fotônica , Óxido de Zinco/química , Compostos de Fósforo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...